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We present a theoretical model of a statistical ensemble, in which, unlike in conventional
physics, the total number of particles and the energy are not fixed but bounded. It is
shown that the temperature and the chemical potential play a dual role: they determine
the average energy and the population of the levels in the system and at the same
time they act as an imbalance between the energy and population ceilings and the
corresponding average values. Different types of statistics (Boltzmann, Bose-Einstein,
Fermi-Dirac and one corresponding to the description of a simple ecosystem) are
considered. In all cases, we show that the systems may undergo a first or a second
order phase transition akin to Bose-Einstein condensation for a non-interacting gas. We
discuss numerical schemes for studying the new ensemble. The results of simulations
are found to be in excellent agreement with theory.

KEY WORDS: Statistical ensemble, ecology.

1. INTRODUCTION

The conventional grand canonical ensemble in physics describes two systems, one
of which (“the reservoir”) has many more degrees of freedom than the other (“the
system”). They are placed in contact with each other and allowed to exchange both
energy and particles. The average values of the energy and number of particles are
controlled by the temperature T and the chemical potential µ, respectively. The
utility of such an ensemble lies in the fact that it closely represents the conditions
under which experiments are often performed.
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Recently, a theoretical scheme for the modification of the grand canonical
ensemble has been proposed(1) in the context of an ecosystem. In that ensemble,
the system consists of an infinite number of energy levels and is coupled with
a reservoir. The total energy and number of particles of both the system and
the reservoir are fixed at some predefined values Emax and Nmax, respectively.
Again, the particles and the energy associated with them are permitted to travel
back and forth from the system to the reservoir. It was found both theoretically
and via simulations that, in equilibrium, the temperature T played a dual role: it
controlled the average energy 〈E〉 of the system (as in the conventional approach)
and at the same time it was equal to the imbalance between Emax and 〈E〉. The
chemical potential also had a dual role: apart from controlling the average number
of particles 〈N 〉, T/|µ| served as an imbalance between Nmax and 〈N 〉. It should be
noted that some other systems, such as the microcanonical quantum ensemble(2),
also allow for similar treatment of the controlling parameters.

The above scheme arises naturally in the studies of the dynamics of ecosys-
tems. Indeed, as a first approximation, an ecosystem can be modeled as a com-
munity of non-interacting individuals (particles) belonging to different species
(energy levels). The concept of finite Emax and Nmax arises from the limited re-
sources available to an ecosystem such as space, solar radiation and freshwater
supplies.

In the simplest ecologically relevant scenario, the probabilities of the birth
and death events (arrival from/departure into the reservoir) in a given level can be
chosen to be density independent or proportional to the current population of the
species. A non-zero birth rate (speciation) is ascribed to unoccupied levels. This
leads to a logarithmic distribution(3) of the number of individuals in each level.

Our earlier theoretical and computational studies of the model of the ecosys-
tem showed that in the absence of constraints on the total population (Nmax = ∞),
an ecosystem may organize in the vicinity of a phase transition akin to Bose-
Einstein condensation. The transition is signalled by the macroscopic depletion of
the population below a critical temperature.

In this paper, we generalize our previous work by applying our model to
systems obeying Bose-Einstein, Fermi-Dirac and Boltzmann statistics and carry-
ing out both theoretical and computational studies. We show that for a system
with Bose-Einstein statistics, the results are similar to the previously studied ecol-
ogy case. Interestingly, the systems obeying Fermi-Dirac or Boltzmann statistics
exhibit a first order phase transition and, unlike the ecological or Bose-Einstein
cases, this behavior is independent of the density of states. Also, we expand our
previous study of ecological systems and show that depending on the value of the
birth/death rate ratio there exist three regimes with distinct behaviors.

The outline of the paper is as follows. In Section 2, starting with the one-
step master equation, we provide a derivation of the partition function of the new
ensemble. For Boltzmann statistics, we demonstrate that the correct counting
arises naturally and the Gibbs paradox is averted. In Section 3, we consider
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different types of statistics and develop the numerical algorithms for simulations.
Also, we present some selected results of the simulations and compare them to
theoretical expectations. Finally, in Section 4, we discuss the connections between
our ensemble and those in classical physics and consider a few examples of our
model.

2. THEORETICAL FRAMEWORK

Consider S independent boxes in which balls (particles) can be inserted or
removed. We label the boxes (energy levels) using the numbers 1, 2, . . . , S. We
postulate that the dynamics of the balls is governed by simple, physically motivated
rules. Our goal will be to determine the steady state configuration of the system
under these rules. Let N represent the total number of balls in the system.

Let us postulate a constant death rate (or removal rate) per ball equal to
d1. Thus the rate of removal of a ball from a given box, with n balls present, is
dn = d1n whereas the rate of insertion (which may be thought of as a birth rate)
of a ball may be taken generally to be a function, bn .

Let P(t ; n) denote the probability that a given box contains n balls at time t .
The time evolution of P is regulated by the master equation(4):

d P(t ; n)

dt
= P(t ; n + 1)(n + 1)d1 + P(t ; n − 1)bn−1 − P(t ; n)(nd1 + bn). (1)

The first (second) term on the right hand side corresponds to the removal
(insertion) of a ball from the box containing n + 1 (n − 1) particles leading to
an enhancement of the probability on the left hand side, whereas the last term
corresponds to a depletion of this probability. The stationary solution can be seen
to satisfy detailed balance and corresponds to an equilibrium situation(4) with

P(n) ∝
n−1∏
m=0

bm

(m + 1)d1
. (2)

It follows that, when there are S boxes, all satisfying the same birth-death
rules, the unique equilibrium solution is

P(n1, n2, . . . nS) =
S∏

k=1

P(nk). (3)

One can readily work out other special cases of the framework we have
presented. If one chooses bn = b0(n + 1), one obtains a pure exponential dis-
tribution P(n) = rn(1 − r ), where r = b0/d1, which, in turn, leads to the Bose-
Einstein distribution(2) for non-degenerate energy levels, i.e. P(n1, n2, . . . nS) =
r N (1 − r )S . On the other hand, if bn = 0 for any n greater than 0 and equal to b0

otherwise, we find P(n) = rn/(1 + r ) for n = 0 or 1 and zero for other values of
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n and the Fermi-Dirac distribution(2) P(n1, n2, . . . nS) = r N /(1 + r )S , provided
each of the ni ’s is 0 or 1 and P(n1, n2, . . . nS) = 0 is zero otherwise.

Note, that the same framework lends itself to the study of the species abun-
dance problem in ecology(1,3,5). Consider the dynamical rules of birth, death and
speciation which govern the population of an individual species. In order to ensure
that the community will not become extinct, speciation may be introduced by as-
cribing a non-zero probability of the appearance of an individual of a new species,
i.e b0 �= 0. If one chooses bn = b0n for n > 0 (this amounts to the assumption that
the birth rate per individual is constant), one obtains the logarithmic distribution
P(n) = [1 − ln(1 − r )]−1rn/n which, in turn, leads to the well-known Fisher log-
series distribution(6), i.e. 〈φn〉 = θrn/n, where θ = S/[1 − ln(1 − r )] and n > 0.
Here, 〈φn〉 represents the average number of species (boxes) with population n.

If bn = b0 is taken to be constant, one finds the Poisson distribution P(n) =
e−r rn/n!. This leads to P(n1, n2, . . . nS) ∝ r N /

∏S
k=1 nk!, which is the celebrated

Boltzmann counting in physics in the grand canonical ensemble and where r plays
the role of a fugacity and N = ∑

k nk . It is noteworthy that, unlike in conventional
classical treatments(2) in which one obtains an additional factor of N !, here one
gets the correct Boltzmann counting and one avoids the well-known Gibbs paradox
in this scheme. If one were to ascribe energy values εk to each of the boxes and
enforce a fixed average total energy, one would get the standard Boltzmann result
that the probability of occupancy of an energy level ε is proportional to e−βε,
where β is proportional to the inverse of the temperature.

Now let us assign the energy εk to the k-th level (box) so that 0 < ε0 <

ε1 < . . . , and introduce the constraints Emax and Nmax on the total energy and
population of the system.

The partition function for the system with fixed Emax and Nmax may be written
as

Q =
∑
{nk }

∏
k

P(nk) � (Emax − ε1n1 − ε2n2 − . . .) � (Nmax − n1 − n2 − . . .), (4)

where �(x) is the unit step function, equal to 0 for x < 0 and 1 for x � 0.
Using the integral representation for � function(7) one can rewrite the above

equation in the following form:

Q =
∑
{nk }

∏
k

P(nk)
∫

γ1

dz1

2π i z1
ez1(Emax−ε1n1−ε2n2−...)

∫
γ2

dz2

2π i z2
ez2(Nmax−n1−n2−...)

=
∫

γ1

dz1

2π i z1
ez1 Emax

∫
γ2

dz2

2π i z2
ez2 Nmax

∏
k

∞∑
n=0

P(n)e−(z2+z1εk )n, (5)
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where the contours γ1,2 are parallel to the imaginary axis with all their points having
a fixed real part x1,2 (i.e. z1,2 ∈ γ1,2 ⇔ z1,2 = x1,2 + iy1,2, −∞ < y1,2 < +∞).
The integral is independent of x1,2 provided x1,2 is positive(7).

Let

e− f (x) =
∞∑

n=0

P(n)e−xn . (6)

Then

Q =
∫

γ1

∫
γ2

dz1dz2eg(z1,z2), (7)

where

g(z1, z2) = − ln(z1) − ln(z2) + z1 Emax + z2 Nmax −
∑

k

f (z2 + z1εk). (8)

In order to evaluate the integral in Eq. (7) we will apply the steepest descent
method(7). Let us expand g(z1, z2) about the point (x1 + i0, x2 + i0), where it is
maximum:

g(z1, z2) ≈ g(x1, x2) − 1

2!
gz2

1
(x1, x2)y2

1 − 1

2!
gz2

2
(x1, x2)y2

2 − gz1,z2 (x1, x2)y1 y2,

(9)

where g
z

k1
1 ,z

k2
2

≡ ∂k1+k2 g(z1,z2)

∂z
k1
1 ∂z

k2
2

. Because g(x1, x2) is a maximum,

gz1 (x1, x2) = gz2 (x1, x2) = 0. (10)

Substituting this expression into Eq. (7) and performing the integration one obtains

Q = eg(x1,x2)√
gz2

1
(x1, x2)gz2

2
(x1, x2) − g2

z1,z2
(x1, x2)

=
exp

[
Emax−µNmax

T − ∑
k f

(
εk−µ

T

)]
√

1 − ∑
k

ε2
k +µ2

T 2 f ′′ ( εk−µ

T

) (11)

Here we neglect the term µ2/(2T 4)
∑

k �=k ′ f ′′ ( εk−µ

T

)
f ′′ ( εk′−µ

T

)
(εk − εk ′)2 under

the square root in the denominator, omit the constant factor in the expression for
Q and replace x1 and x2 by 1/T and −µ/T , respectively (T � 0 and µ � 0).
Eq. (10) yields

Emax = T +
∑

k

εk f ′
(

εk − µ

T

)
(12)
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and

Nmax = −T

µ
+

∑
k

f ′
(

εk − µ

T

)
. (13)

The free energy, F , is given by

F ≡ −T ln Q = −Emax + µNmax + F0 + F1, (14)

where

F0 = T
∑

k

f

(
εk − µ

T

)
(15)

and

F1 = 1

2
T ln

[
1 −

∑
k

ε2
k + µ2

T 2
f ′′

(
εk − µ

T

)]
. (16)

The last term, F1, can be neglected for large enough systems because F1/F0 ∝
ln(V )/V � 1, where V is the characteristic size of the system.

Using Eq. (14), one can find the relative entropy S:

S = −∂ F

∂T
= −

∑
k,n

P̃n,k(T ) ln
P̃n,k(T )

Pn
, (17)

where

P̃n,k(T ) = Pne−(εk−µ)n/T∑
m Pme−(εk−µ)m/T

. (18)

The average population of the k-th level is given by

〈nk〉 = ∂ F

∂εk
= f ′

(
εk − µ

T

)
(19)

and the average population and the total energy of the system are defined as
〈N 〉 = ∑

k〈nk〉 and 〈E〉 = ∑
k εk〈nk〉, respectively. Thus one can rewrite Eqs. (12)

and (13) as

Emax = T + 〈E〉 (20)

and

Nmax = − 1

ln(α)
+ 〈N 〉, (21)

where α ≡ exp(µ/T ).
The above equations demonstrate the dual role of the temperature and the

chemical potential, which was discussed earlier and represent the central result of
our derivation.
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Let us postulate that εk = k1/(d+1) with d > −1, i.e. the number of energy
levels per unit energy interval (the density of states) scales as V εd , where V is the
size of the system. As in conventional statistical physics, a true phase transition
can only occur in the thermodynamical limit, when both N and V become very
large and the density Nmax/V is fixed. In what follows we will work in units in
which V is set equal to 1.

In a continuum formulation, one obtains the following expressions for the
average energy 〈E〉 and population 〈N 〉 of the ecosystem:

〈E〉 = T d+2 I1(α) (22)

and

〈N 〉 = T d+1 I0(α), (23)

where

Im(α) = (d + 1)
∫ ∞

0
f ′[t − ln(α)]td+mdt. (24)

In the next section we will show, by explicitly calculating the integrals in
Eq. (24), that for systems with Bose-Einstein, Fermi-Dirac and Boltzmann statis-
tics, I0,1(α) are 0 when α = 0 and monotonically increase as α approaches 1.

From Eqs. (20)–(23) one can see that, for a given Emax, the temperature
T cannot become lower than some value Tmin, which occurs when there is no
constraint on the total population, i.e Nmax = ∞. Similarly, the system reaches the
maximum T = Emax when Nmax = 0 and the system is empty.

In order to analyze whether the system can undergo a phase transition, we
will use a scheme similar to the familiar one in Bose-Einstein condensation(8). Let
us fix the value of Nmax in Eq. (21) and vary the temperature (this can be done by
varying Emax). At very high temperatures, the values of α are very small and thus
one can neglect the first term (imbalance) in the rhs of Eq. (21). This means that
the system is populated to its full capacity Nmax. As we decrease the temperature, α
approaches 1 and the imbalance can no longer be neglected (the system undergoes
depletion). If I0(1) is finite then one can introduce a critical temperature Tc

Tc =
(

Nmax

I0(1)

) 1
d+1

(25)

above which 〈N 〉 ≈ Nmax and below which the system undergoes a rapid depletion.
Note that in our ensemble the imbalance −1/ ln(α) acts as a zero groundstate
level in the conventional grand canonical ensemble: the macroscopic depletion of
the population of the former is analogous to the macroscopic occupation of the
groundstate of the latter.

Finally, let us note that α = 1 is related to two cases: first, it enters the
expression for Tc and, second, α = 1 when the system has just the Emax constraint
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(Nmax = ∞). This suggests that Tmin = Tc provided that Tc exists (i.e. I0(1) is
finite). Indeed, let us consider the following scenario: when Nmax = ∞ the system
organizes at Tmin with some average population NM and from Eq. (23) it follows

that Tmin =
(

NM
I0(1)

) 1
d+1

. But this is also the critical temperature for the system with

Nmax = NM . Note that in the simulations the actual transition temperature T ′
c

slightly differs from Tc since for finite Nmax the value of α cannot reach 1.

3. THEORETICAL AND NUMERICAL RESULTS FOR SYSTEMS

WITH DIFFERENT STATISTICS

We now consider four distinct cases and demonstrate that the behavior ob-
served in simulations is in excellent accord with the theoretical predictions.

3.1. Boltzmann Statistics (Figures 1 and 2)

3.1.1. Theory

For Boltzmann statistics (bn = b0, dn = d1n and f (x) = r [1 − exp(−x)])
Eqs. (20) and (21) give

〈nk〉 = αre−εk/T , (26)

Emax = T + (d + 1)
(d + 2)αrT d+2 (27)

and

Nmax = − 1

ln α
+ 
(d + 2)αrT d+1, (28)

where r = b0/d1 and 
(x) = ∫ ∞
0 t z−1e−t dt is the gamma function.

One can see that I0(1) is finite for any d. Thus the system with Boltzmann
statistics can undergo a first order phase transition (see Figure 2).

From Eq. (26) it follows that the average population of any level cannot
exceed r , hence r should be large (we used r = 100 in simulations).

3.1.2. Simulations

At any given time step, a level is randomly picked and a random number R in
the interval [0, 1) is generated. If R < b0/(n + 1) and there is sufficient energy and
available particles in the reservoir a birth event occurs (here n is the occupancy of
the level). If R � 1 − d1 and the level is occupied, a death event occurs. Otherwise
no action is taken. Note that in this scheme the birth and death rates are chosen to
be bn = b0/(n + 1) and dn = d1 (this is equivalent to bn = b0 and dn = d1n since
only the ratio bn/dn+1 enters the expression for the probability). This choice is
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Fig. 1. The results of the simulations of the novel ensemble with Boltzmann statistics. r = 100.
εk = k2/3, k = 1..1000, Nmax = 35, Tmin ≈ 0.62 (one can use Eq. (20) to determine the value of Emax

associated with the transition temperature Tmin). Here Cv = ∂〈E〉/∂T is the specific heat of a system.
The peak in the specific heat occurs at the phase transition. The solid line denotes the theoretical
prediction.
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Fig. 2. Boltzmann Statistics. r = 100, d = 1, Nmax = 106.

helpful because both bn and dn are finite for arbitrary n. However the dynamics of
cases with the same ratio bn/dn+1 but different choices for the death and birth rate
are different (for example relaxation times etc.). This is true for the other cases
considered below. The absolute value of b0 (recall that d1 = b0/r ) is not important
provided that bn + dn � 1, ∀n.

3.2. Fermi-Dirac, Bose-Einstein and Ecological Systems

The above analysis can be straightforwardly applied to Fermi-Dirac and Bose-
Einstein statistics as well as the ecologically relevant case. We have found that
systems with Fermi-Dirac statistics behave exactly in the same way as the one with
Boltzmann statistics. However, Bose-Einstein systems and ecological systems may
exhibit quite different behaviors depending on the values of parameters r and d:

When r < 1, the system is underpopulated, i.e. 〈nk〉 is finite for any value of
T and the system undergoes a phase transition for any value of d > −1,

When r = 1 the system can undergo a continuous phase transition only for a
class of density of states with d > 0 (see Figures 3 and 4).
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Fig. 3. The results of the simulations of the novel ensemble with Bose-Einstein statistics. r = 1.
Left panel: εk = k0.5, k = 1..100, 000, Nmax = 70, Tmin ≈ 4.87. Right panel: εk = k3/2, k = 1..1000,
Nmax = 275, Tmin ≈ 115. The peak in the specific heat occurs at the phase transition. Note the absence
of a phase transition when d is negative. The solid line denotes the theoretical prediction.

Finally, when r > 1, one finds, generally, for sufficiently large Emax (and
Nmax = ∞) that the occupancy of the excited levels is small and independent of
Emax with the population of the ground state increasing proportional to Emax. The
behavior of the system is qualitatively independent of d. Note that the saddle point
approximation does not hold for this case.
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Fig. 4. Bose Statistics. r = 1, d = 1, Nmax = 106.

Also, in ecological systems, one would expect, in the simplest scenario,
that there ought to be a co-existence of all species in our model with an infinite
population of each when there are no constraints whatsoever or equivalently when
Emax = Nmax = ∞. This case corresponds to r = 1.

4. CONCLUSIONS

We conclude with a brief discussion on the relationship of the novel ensem-
ble that we have studied here with standard ensembles in physics. The familiar
microcanonical ensemble is obtained on replacing both � functions in Eq. (4)
by Dirac delta functions. Indeed, by implementing the steepest descent method
on Emax term, one obtains the canonical ensemble whereas on using the steepest
descent method on both the Emax and Nmax terms, one obtains the grand canonical
ensemble.

Our numerical scheme is readily modified for the study of the canonical
ensemble. At each timestep, two events occur (provided that the energy constraint
is satisfied): two levels are chosen randomly and a death of a particle in one level is
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followed by a birth of the particle in another, provided that the energy constraint is
satisfied (otherwise no action is taken). No action is taken if the first level chosen
has no particles in it. We have implemented this scheme and confirmed that it is
in excellent accord with theoretical expectations.

As a possible application of our model, one can consider the effect of photoex-
citation (and/or photoionization), which occurs when the radiation produced when
an external source interacts with the surrounding atomic gas (e.g., planetary nebu-
lae or OB star associations embedded in gas clouds(9). In this case, the processes of
birth/death are represented by excitation/deexcitation (ionization/recombination).
The maximum number of electrons that can possibly go into excited states (or, in
the case of ionization, leave the atom) corresponds to Nmax and the radiation flux
can be associated with Emax. One would expect then that the stimulated emission
from the gas will follow the phase transition scenario described in this paper, i.e.
on decreasing Emax below some critical value one would observe a rapid decline
in the flux of stimulated emission.

A more direct example of our ensemble is a shopping game. Consider a
consumer shopping in a supermarket. The energy levels correspond to the different
types of products (the products are distinguished from each other by their price
only). The total amount of money that the consumer has corresponds to Emax. The
analog of Nmax is the limit on the maximum number of items that the consumer
could buy and is determined, say, by the size of the consumer’s shopping cart.
The dynamics of the game consists of the following rules. The analog of birth is
selection of an item from the store shelf and adding to the cart provided that the
number of items in the cart does not exceed the threshold and provided that the
shopper has sufficient money to buy all the merchandize in the cart. The removal
of an item from the cart and returning it to the shelves corresponds to a death event.

Let us reformulate the rules discussed earlier in the language of this shopping
game. For Boltzmann statistics, the addition event corresponds to the placement
of an item of a randomly picked product in the cart and the death event is the
removal of a random item from the cart. For Bose-Einstein statistics, the addition
event is the same as for Boltzmann statistics and the death event corresponds to
the removal of an item of a randomly picked product already in the cart. For this
case, r is a measure of the ratio of addition to removal attempts. Fermi statistics
has the same rules as Bose-Einstein statistics with the constraint that at most there
is just one item in the cart of any given product. The ecology case consists of
addition of an item of a product already contained in the cart with a probability
proportional to the number of such items, a non-zero probability of the addition
of an item of a product not already represented in the cart and the removal of a
randomly picked item present in the cart. Note that the above rules are not unique
and there are many ways to obtain any desired statistics.

Our two key results can be stated as follows. First, the average quantity
of money remaining in the shopper’s wallet (the imbalance) is non-zero and
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determines the relative numbers of items of different products represented in
the cart. The imbalance magnitude plays the role of temperature in the system. For
a given Emax = EM , with no Nmax constraint, let the average number of items in
the cart be denoted by NM . The novel transition that we observe corresponds to the
case in which Nmax = NM and occurs on varying Emax or the total money in the
wallet. There is a sharp depletion in the number of items in the cart as Emax drops
below EM . Interestingly this phase transition occurs for any density of states for
the Boltzmann and Fermi-Dirac cases and is a first order but only for the ‘right’
density of states, when r = 1, for the ecology and Bose-Einstein cases, where it
becomes a continuous transition.
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